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Introduction
• Machine learning has become a common tool 

for broad spectrum of HEP problems


• Particle identification


• Calibrations/corrections


• Energy regression


• Jet/event classification


• Trigger/readout imposes limitations on use of 
ML


• Recent developments have further opened up 
the potential for ML solutions in this realm, 
exciting possibilities
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HEP Data Processing / Readout

• Level-1 Trigger (hardware: FPGAs) - O(μs) hard latency


• High Level Trigger (software: CPUs) - O(100 ms) soft latency


• Offline (software: CPUs) - >1 s latencies
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ML @ HLT
• HLT allows use of CPUs for inference


• Heterogeneous systems also possible (being investigated)


• Similar to offline inference


• Typically still need to be aware of inference latency


• Can place ML algorithms later in trigger decisions to reduce 
average processing time


• Targeted for specific topologies, not used for full event 
reconstruction


• E.g. b-tagging, taus 

• Can reduce size/complexity of ML algorithm to lower latency


• Can utilize hardware accelerators


• E.g. GPUs, as-a-service
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HLT: b-tagging
• Multiple algorithms/architectures (relatively mature usage)


• Ex. CMS:


• CSVv2: BDT


• DeepCSV: DNN, ~50k parameters


• Good online performance


• Run on small fraction of events


• Minimal performance degradation w.r.t. offline
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HLT: Tau ID
• ML has become popular tool for tau identification


• Large CNN- and LSTM-based networks from 
CMS and ATLAS


• Much larger latencies than b-tagging networks, 
harder to implement into trigger


• Heterogeneous systems offer some promise 
(plans for future upgrades)

7O(1.5M) parameters



HLT: Heterogeneous Systems
• Heterogeneous systems can speed up ML inference 

significantly


• SONIC (see Nhan Tran’s talk) provides framework to 
take full advantage of coprocessor resources


• ML as-a-service


• Both FPGAs and GPUs shown to achieve maximal 
reduction in processing time in HLT tests (ML HCAL 
energy regression)


• Single GPU (FPGA) can seamlessly serve up to 
300 (1500) CPUs


• arXiv:2007.10359, arXiv:2010.08556
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V100 GPU 

AWS f1 FPGA (VU9P)

https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2010.08556
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ML @ L1
• Very different constraints and hardware 

compared to CPU/GPU


• Latencies of ~100 ns, scarce resources


• Can be difficult to develop without lots of 
specialized knowledge


• hls4ml facilitates usage of ML on FPGAs


• Support for many different architectures and 
frameworks


• Growing number of examples/proposed 
examples in ultra-low latency regime


• Refer to Nhan Tran’s talk for some more 
examples!
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• hls4ml is a software package for creating implementations of neural networks 
for FPGAs and ASICs


• https://fastmachinelearning.org/hls4ml/


• arXiv:1804.06913


• Supports common layer architectures and model software, options for 
quantization/pruning


• Output is a fully ready high level synthesis (HLS) project


• Customizable output


• Tunable precision, latency, resources
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hls4ml Workflow
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Inference on FPGAs
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Inference on FPGAs
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Inference on FPGAs
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Inference on FPGAs
Every clock cycle 


(all layer operations 

can be performed 

simultaneously)



hls4ml Customization
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• Multiple different knobs to adjust design for desired 
performance/latency/resource usage


• Pruning


• Quantization


• Reuse



Pruning
• Are all the pieces a given network necessary?


• Many techniques for determining “best” way to 
prune


• hls4ml naturally supports a method of 
successive retraining and weight minimization


• Use L1 regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes multiplications by 0
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>70% initial 
weights 
removed



Quantization
• hls4ml uses fixed-point classes for all computations


• Precision can be adjusted as needed (impacts 
accuracy, performance, resources)


• Can be combined with other customizations


• Binary & Ternary neural networks take this to very 
low precision: [2020 Mach. Learn.: Sci. Technol]


• Quantization-aware training - QKeras + support in 
hls4ml: [arXiv:2006.10159]
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https://iopscience.iop.org/article/10.1088/2632-2153/aba042/meta
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Reuse
• For lowest latency, 

compute all 
multiplications at once


• Reuse = 1 (fully parallel) 
→ latency = # layers)


• Larger reuse implies more 
serialization


• Allows trading higher 
latency for lower resource 
usage
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Layer 1 Layer 2



CMS Phase 2 Upgrade
• For HL-LHC, CMS will upgrade 

every subdetector


• Trigger upgrade will provide strip 
tracking information at L1


• L1 will have (almost) full 
detector information


• Forward calorimeter completely 
upgraded with 3-dimensional 
readout


• Many new ML algorithms are 
looking to take advantage of this 
upgrade
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HGCal PU ID
• CMS upgrade will install entirely new high 

granularity calorimeter


• 3-dimensional, silicon-based


• Without ID, extremely large number of clusters 
at 200 pileup


• BDTs developed to  
reject PU, discriminate 
between γ and π


• Highly efficient vs PU


• hls4ml supports BDTs 
through Conifer  
[JINST 15 P05026 (2020)]
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https://arxiv.org/pdf/2002.02534.pdf
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L1 Tau ID
• Tracks at L1 allow more sophisticated tau identification


• Offline-like algorithm combines e/γ clusters with tracks to construct 
known tau decays


• Small MLP (3-layer) trained to identify taus using particle candidates


• Latency of 36 ns


• Benchmark L1 tau algorithm for CMS


• Improved performance potentially with CNNs/RNNs
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CNNs
• Special adjustments necessary to 

implement convolutional networks on 
FPGAs


• HLS struggles with very long 
(nested) loops


• hls4ml is now able to synthesize large 
CNNs with good resource scaling


• Further optimizations possible for 
lower latencies


• arXiv:2101.05108
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https://arxiv.org/pdf/2101.05108.pdf
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GarNet
• Graph networks have become very 

popular for complex geometric problems


• Iterative nature difficult for FPGAs


• Modified GarNet architecture 
implemented in hls4ml


• arXiv:2008.0360


• Model developed for HGCal cluster ID 
and energy regression


• Able to run in under 1 μs, fit within a 
single VU9P SLR
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https://arxiv.org/pdf/2008.03601.pdf
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Other examples
• Many other possibilities for ML in trigger (and 

ongoing development)


• One highlight: New Physics auto encoder


• 8-layer dense network


• Trained only on minimum-bias background events


• Sensitive to anything that doesn’t look like 
standard background


• Can be run in ~100 ns
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Conclusions
• Machine learning is an increasingly important part of HEP workflows


• Full advantage of the gains from ML requires integration with trigger/
readout systems


• Conventional CPU inference can only be done so fast


• Alternative architectures can offer major speedups (FPGAs, GPUs, others)


• hls4ml opens up possibilities for low latency ML inference on FPGAs


• Many possibilities for ML applications in trigger/readout on the horizon
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BACKUP
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